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Dynamical phase diagram of the random field Ising model
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Abstract. The stationary states of the random-field Ising model are determined through the master equa-
tion approach, where the contact with the heat bath is simulated by the Glauber stochastic dynamics. The
phase diagram of the model is constructed from the stationary values of the magnetization as a function
of temperature and field amplitude. The continuous phase transitions coincide with the equilibrium ones,
while the first-order transitions occur at fields larger than the corresponding values at equilibrium. The
difference between the fields at the limit of stability of the ordered phase and that of the equilibrium
is maximum at zero temperature and vanishes at the tricritical point. We also find the mean field time
auto-correlation function at the stationary states of the model.

PACS. 64.60.Ht Dynamic critical phenomena

1 Introduction

The random-field Ising model (RFIM) has received much
attention in recent years, especially concerning its lower
critical dimensionality [1]. Now, it is well known [2–4]
that the lower critical dimensionality of this model is two.
Many other important questions related to this model can
be found in the literature, both theoretical [5,6] and ex-
perimentally [7–9]. On the other hand, the time evolution
of the thermodynamical systems can be studied by estab-
lishing the dynamical stochastic process that simulates the
contact with the heat bath. In general, for spin models, we
describe the evolution of the probability of the states of the
system through the master equation [10], and we choose a
transition rate between states, according to the Glauber
stochastic process [11]. In this work we consider a ferro-
magnetic mean-field Hamiltonian, subject to a quenched
random field at each site of the lattice. For a distribution
of the random fields which is of the bimodal type (sum
of two δ functions), Aharony [12] has shown in the mean
field approximation that the equilibrium phase diagram
of this model exhibits a tricritical point. As we will show
below, the dynamical phase diagram we obtain also ex-
hibits the same line of continuous transitions as in the
work of Aharony. However, the first-order transition line
gives us only the limit of stability of the ordered phase.
The stationary solutions of the master equation are not
the equilibrium thermodynamic solutions. The difference
between the dynamical critical field and the equilibrium
one vanishes exactly at the tricritical point.
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2 The model and the calculations

The ferromagnetic mean-field Hamiltonian for the kinetic
Ising model in a lattice with N sites is given by

H = −
J

N

∑
(i,j)

σiσj −
∑
i

Hiσi, (1)

where the sum is over all pairs of spins, σi = ±1, J > 0,
and Hi is the quenched local random field at site i. The
distribution of the random fields is given by the following
bimodal distribution

P (Hi) =
1

2
[δ(Hi +H0) + δ(Hi −H0)], (2)

where H0 is the magnitude of the random field. The phase
diagram of this model was studied by Aharony [12] in the
thermodynamical equilibrium. He found that the model
exhibits a tricritical point which separates the line of con-
tinuous transitions from that of first-order transitions. The
coordinates of the tricritical point are given by
τ = kBT/J = 2/3 and h = H/J = 0.43. Now, we consider
the time evolution of the probability states of this system,
according to the Glauber stochastic process [11], with the
following prescription for the transition rate:

W (σi) =
1

2
[1− σi tanh(βEi)], (3)

where

Ei =
J

N

∑
j 6=i

σj +Hi. (4)

From the master equation associated to this stochastic
process we can derive the equation for the time evolution
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of the mean local magnetization:

∂〈σi〉

∂t
= −〈σi〉+ 〈tanh(βEi)〉, (5)

for a given distribution of the random fields. If N → ∞,
we can write that

1

N

∑
i6=j

σi = 〈σi〉. (6)

Then, taking the mean with respect to the distribution of
the random fields,

m = 〈〈σi〉〉 =

∫ ∞
−∞
〈σi〉P (Hi)dHi, (7)

we arrive at the following equation for the time evolution
of m:

dm

dt
= −m+

1

2
[tanh(βJm+ βH0) + tanh(βJm− βH0)].

(8)

We can also calculate the time-delayed spin correlation
function in this mean field approach. Consider a fixed time
t, which will be taken as the initial time, and a given time
interval τ . We define the time correlation function for the
spins σi(t) and σj(t+ τ) as

〈σi(t)σj(t+ τ)〉 =
∑
σ,σ′

P (σ1, σ2, . . . , σN , t)σi(t)

×p(σ1, σ2, . . . , σN |σ
′
1, σ
′
2, . . . , σ

′
N )σ′j(t) (9)

where P (σ1, σ2, . . . , σN , t) is the probability associated
with the initial configuration {σ} at time t and p(σ1, σ2,
. . . , σN |σ′1, σ

′
2, . . . , σ

′
N ) is the conditional probability to

find the configuration {σ} at the later time (t+ τ). If we
derive the time correlation function with respect to τ , we
obtain, after some algebraic manipulations the following
equation

d〈σi(t)σj(t+ τ)〉

dτ
= −2〈σi(t)σk(t+ τ)W (σi(t))〉. (10)

Considering equations (3, 4, 6) we can write

d〈〈σi(t)σj(t+ τ)〉〉

dτ
=〈〈σi(t)σj(t+ τ)〉〉

+〈〈σj(t+ τ) tanh(βJ〈σi(t)〉+ βHi)〉〉, (11)

where the mean with respect to the quenched distribution
of random-fields is already indicated.

3 Results and discussions

We have numerically solved the equation (8) for each pair
of values of temperature and intensity of the random field.
We have chosen the initial condition as being m(0) = 1.
The time to attain the stationary states depends on the

Fig. 1. Stationary magnetization m as a function of the
reduced random-field magnitude h = H0/J . Here we take
τ = kBT/J = 0.75.

selected values of the temperature and of the random field.
For the values of the reduced temperature τ = kBT

J ≥ 2
3

the magnetization goes continuously to zero as we change
the magnitude of the random field. For instance, we show
in Figure 1 the behavior of the stationary values of the
magnetization as a function of the reduced intensity of
the random field h = H0/J , for the temperature τ =
0.75. For this temperature, the critical value of the field is
hc = 0.41. The critical stationary values we obtain agree
with those found by Aharony. The time to achieve the
stationary states becomes extremely large as we approach
the critical field. This result was already expected because
near the transition point the magnetization is very small,
and if we linearize equation (8) we obtain

dm

dt
= [1− sec2(βH0)βJ ]m, (12)

m(t) ≈ m(0)e−
t
Γ , (13)

where

Γ =
τ

τ − sec2
(
h
τ

) . (14)

Therefore, near the transition point, the relaxation time Γ
to attain the stationary state becomes very large because,
at the critical point, the condition τc = sec2(hc/τc) must
be fulfilled [12] by the critical values.

For temperatures τ ≤ 2/3, the behavior of the station-
ary magnetization for very large times can be seen in Fig-
ure 2, where τ = 0.30. We observe that, differently from
Figure 2, the stationary magnetization is not continuous
as a function of the reduced field h. However, the value of
the field at the transition is larger than the correspond-
ing one at the equilibrium. The latter field was obtained
equating the free energies of the paramagnetic and ferro-
magnetic phases. The stationary solutions we obtain here
give us only the limit of stability of the ordered phase.
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Fig. 2. Stationary magnetization m as a function of the re-
duced random-field magnitude h. Here we take τ = 0.30.

Fig. 3. Phase diagram for the kinetic Ising model in a
quenched random-field. The full line corresponds to the contin-
uous phase transitions, the dashed line is associated with the
limit of stability of the ferromagnetic phase, and the dotted
line represents the equilibrium first-order transitions. TCP is
the tricritical point.

We show in Figure 3 the complete phase diagram of the
model in the plane τ versus h. The line of the continuous
phase transitions and the tricritical point (TCP) are the
same as in the work of Aharony [12]. However, we have
plotted in the same figure the equilibrium first-order phase
transitions, given by the dotted line, and the stationary
first-order transitions, given by the dashed line. As we
can see, the difference between these two transition fields
is maximum at zero temperature, and it vanishes exactly
at the tricritical point.

The dynamical approach does not give us the free en-
ergy of the model, and it is not possible to obtain the
stable solutions for this problem. We note that in the re-
gion between the dotted and the dashed lines of Figure 3,

equation (8) can furnish two stationary solutions: m = 0
andm 6= 0. As usual for the metastable states, the solution
we obtain depends on the initial condition. As in our case
we have chosen the initial condition as being m(0) = 1,
we have got the solution m 6= 0 up to the dashed line of
Figure 3. Beyond this line, the only stable solution which
remains is m = 0.

For the evolution of the time correlation function, given
by equation (11), let the initial time go to infinity
(t→∞). In this limit 〈〈σi(t)〉〉 = 〈〈σi(t+τ)〉〉 = m, where
m is the stationary solution of equation (8). Then, taking
i ≡ j in equation (11), we obtain the following equation
for the auto-correlation function in the limit (t→∞):

d〈〈σi(t)σi(t+ τ)〉〉

dτ
= −〈〈σi(t)σi(t+ τ)〉〉 + m2. (15)

In the paramagnetic phase, where m = 0, the solution we
obtain is given by

〈〈σi(t)σi(t+ τ)〉〉 = exp(−τ), (16)

because, at τ = 0, 〈〈σ2
i (t)〉〉 = 1. On the other hand, if the

stationary state is ordered, the auto-correlation function
is given by

〈〈σi(t)σi(t+ τ)〉〉 = (1−m2) exp(−τ) +m2. (17)

As to be expected, in the limit of τ → ∞ the auto-
correlation function becomes decoupled, that is,

〈〈σi(t)σi(t+ τ)〉〉 = 〈〈σi(t)〉〉〈〈σi(t+ τ)〉〉 = m2.

Our mean field result for the time auto-correlation func-
tion is equivalent to the zeroth-order calculation performed
by Sommers [13], which developed a path-integral for-
malism for the Glauber dynamics and applied it to the
Sherrington-Kirkpatrick model of spin glasses.

4 Conclusions

We have studied the dynamical behavior of the Ising model
in a quenched random field, with a bimodal distribution
for the random fields. The time evolution of the proba-
bility states of the system was described by the master
equation, with the transition rate given by the stochas-
tic process of the Glauber type. The phase diagram we
have obtained in the plane temperature versus magnitude
of the random field coincides with the equilibrium one
only for the continuous transitions between the ferromag-
netic and paramagnetic phases. On the other hand, our
stationary line for the first-order phase transitions gives
transition fields that are greater than the corresponding
fields at the thermodynamical equilibrium. The difference
between these two transition fields is maximum at zero
temperature, and vanishes as we approach the tricritical
point. We also have obtained an exponential decay for the
time auto-correlation function for the stationary states of
the system.
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